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Abstract

The increasing volume of commercially avail-
able conversational agents (CAs) on the mar-
ket has resulted in users being burdened with
learning and adopting multiple agents to ac-
complish their tasks. Though prior work has
explored supporting a multitude of domains
within the design of a single agent, the in-
teraction experience suffers due to the large
action space of desired capabilities. To ad-
dress these problems, we introduce a new task
BBAI: Black-Box Agent Integration, focus-
ing on combining the capabilities of multi-
ple black-box CAs at scale. We explore two
techniques: question agent pairing and ques-
tion response pairing aimed at resolving this
task. Leveraging these techniques, we design
One For All (OFA), a scalable system that pro-
vides a unified interface to interact with multi-
ple CAs. Additionally, we introduce MARS:
Multi Agent Response Selection, a new en-
coder model for question response pairing that
jointly encodes user question and agent re-
sponse pairs. We demonstrate that OFA is able
to automatically and accurately integrate an en-
semble of commercially available CAs span-
ning disparate domains. Specifically, using the
MARS encoder we achieve the highest accu-
racy on our BBAI task, outperforming strong
baselines.

1 Introduction

Influenced by the popularity of intelligent conver-
sational agents (CAs), such as Apple Siri and Ama-
zon Alexa, the conversational AI market is grow-
ing at an increasingly rapid pace and is projected to
reach a valuation of US $13.9 billion by 2025 (Mar-
ket and Markets, 2020). These CAs have already
begun to show great promise when deployed in
domain-specific areas such as driver assistance (Lin
et al., 2018), home automation (Luria et al., 2017),
and food ordering (Frangoul, 2018) with platforms

∗Work was done while at University of Michigan

Figure 1: An example interaction using One For All
which integrates multiple production black-box agents
into a unified experience.

such as Pandora and Facebook today hosting more
than 300,000 of these agents (Chaves and Gerosa,
2018; Nealon, 2018).

Most CAs are designed to be specialized in a sin-
gle or set of specific domains. As such, users are
required to interact with multiple agents in order
to complete their tasks and answer their queries as
shown in figure 1. For example, a user may use an
agent such as Amazon Alexa for online shopping
but engage with Google Assistant for daily news
updates. Additionally, a given agent may be more
proficient at a specific domain over another i.e A
finance CA is better suited to answer finance ques-
tions. As a result, users are taxed with the burden
of learning and adopting multiple agents leading to
an increase in the cognitive load of interacting with
agents, further discouraging the proliferation of
their usage (Dubiel et al., 2020; Novick et al., 2018;
Saltsman et al., 2019). This is escalated further as
the number of conversational agents deployed into
the market continues to increase. Therefore, the
need arises for unifying multiple independent CAs
through one conversational interface. This need has
manifested in the commercial conversational AI in-
dustry with initiatives such as the Amazon Voice
Interoperability Initiative (Amazon, 2019) which
aims to create voice-enabled products that contain
multiple, distinct, interoperable intelligent assis-
tants on a single device. However, this interaction



is still manual, requiring the user to orchestrate
which agent is initiated. In addition, while it is
possible to have distinct agents in a single device,
users prefer interacting with a single agent over
multiple (Chaves and Gerosa, 2018).

Prior work has explored in part combining the
strengths of multiple agents in one system but they
rely on direct access to the design and implementa-
tion details of the to-be-integrated agents. Sub-
ramaniam et al. (2018) and Cercas Curry et al.
(2018) direct incoming user questions to a spe-
cific agent based on the candidate agents’ internal
knowledge graph and NLU architectures, respec-
tively. However, in practice, the majority of the
publicly available CAs are "black boxes" where
their inner-workings contain highly-protected IP
that is not accessible to the public. Additionally,
Cercas Curry et al. (2018) facilitates their bot se-
lection with a manual heuristic preference order
that requires intimate knowledge of the agents to
construct, and additional effort to maintain, thus
not scaling well for the adaption of existing agents
and introduction of new agents. Therefore, the task
of integrating multiple production black-box CAs
with a unified interface remains an open problem.

In order to explore this problem, we introduce
the task BBAI: Black-Box Agent Integration that
focuses on integrating multiple black-boxes CAs.
We propose two techniques to tackle black-box
multi-agent integration: (1) Question agent pair-
ing and (2) Question response pairing. Intuitively,
these two approaches can be viewed as a query-
to-agent classification problem in contrast to that
of a response selection problem. This formulation
allows us to facilitate multi-agent integration whilst
operating within the black-box constraints of the
agents. Using these techniques we develop One For
All, a novel conversational system that accurately
and automatically unifies a set of black-box CAs
spanning disparate domains. Additionally, we in-
troduce MARS: Multi Agent Response Selection,
a new encoder model for question response pair-
ing that jointly encodes user question and agent
response pairs. We evaluate these techniques on a
suite of 19 publicly available agents consisting of
Amazon Alexa1, Google Assistant2, SoundHound
Houndify3, Ford Adasa (Lin et al., 2018) and many
more.

1https://developer.amazon.com/en-US/
alexa

2https://assistant.google.com/
3https://www.houndify.com/

Specifically, this paper makes the following con-
tributions:

• Formulation of the BBAI task that focuses on
the challenge of integrating disparate black-
box conversational agents into one experience.
We construct a new dataset for this task, com-
prising of examples from a suite of 19 com-
mercially deployed conversational agents. We
publish our model and datasets. 4

• We design One For All, a novel conversational
system that accurately and automatically uni-
fies a set of black-box CAs and introduce the
MARS encoder model that outperforms strong
state-of-art classification and ranking model
baselines on our BBAI task.

• We conduct a thorough evaluation of various
agent integration approaches showing that our
MARS encoder outperforms strong baselines.
We show that by facilitating the integration
of multiple agents we can alleviate the need
for users to adopt multiple agents whilst facil-
itating the improvement and growth of agents
over time.

2 BBAI: Black-Box Agent Integration
Task Formulation

Building a unified interface for production agents
spanning different domains presents several key
challenges. First, most commercially available
CAs are black-boxes, providing little to no infor-
mation on their inner workings. Any approach for
agent integration must operate without relying on
the internals of any given agent. Second, these con-
versational agents are constantly improved upon
and expanded with new capabilities. The agent inte-
gration approaches need to be flexible and adaptive
to these changes with relative ease. Given these
constraints we assume the existence of the follow-
ing information sources for the agent integration
task:

1. User query/utterance: The question that the
user asks the agent.

2. Agent skill representation: A textual represen-
tation that denotes what each agent is capable
of. This can be in the form of example queries
or a description of that agent.

4https://github.com/ChrisIsKing/
black-box-multi-agent-integation
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Figure 2: Overview of our proposed black-box agent
integration techniques. In QA Pairing, the goal is to
select the correct agent using information about the
agent’s capabilities. In QR Pairing, the goal is to se-
lect the correct agent response.

3. Agent response: Each agent’s response to the
query asked.

Using this information we formulate the task of
agent integration as given a query Q, a set of agents
A = {a1, a2, . . . , an} and a set of agent responses
R = {r1, r2, ..., rn} to query Q, determine the
question-agent-response pair (Q,Ai, Ri) that re-
solves the query Q. Further, given the information
available, we can taxonomize our approach into
two techniques: (1) Question agent pairing where
we preemptively select the agent for the query and
(2) Question response pairing where we evaluate
the set of returned responses as depicted in Figure
2.

2.1 Question Agent Pairing

As shown in Figure 2, the goal of question agent
pairing is, given a query Q and a set of agents
A = {a1, a2, . . . , an}, determine the question-
agent pair (Q,Ai) that resolves the query Q. At its
core, this can be viewed as a classification problem
where the model learns the respective capabilities
of each independent agent in order to predict which
agent to use for a given question.

2.2 Question Response Pairing

As shown in Figure 2, the goal of question re-
sponse pairing is, given a query Q and a set of
agent responses R = {r1, r2, ..., rn}, determine
the question-response pair (Q,Ri) such that Ri

resolves the query Q.

Figure 3: The transformer-based classification models
in the OFA system. The models are trained on question
agent pairs and tasked to predict an agent to route the
given query to.

3 The One For All System

In this section, we present the design of One For All
(OFA), a scalable system that integrates multiple
black-box CAs with a unified interface. We ex-
plain the various approaches implemented in One
For All, detailing their inputs, outputs and training
methodology.

3.1 Question Agent Pairing

In order to predict the best agent for a given query,
knowledge of each agent’s individual skill-set is
required. However, as described in the task formu-
lation in Section 2, the internal details of the agents
are unavailable. Everyday users of these agents
have no insight into the internal specifics of these
agents. However, they are able to use these agents
to accomplish tasks by building a mental model of
each agents’ respective capabilities through usage
over time. We draw inspiration from this to deter-
mine the information we can use to represent an
agent’s skills without access to its internals.

3.1.1 Agent Skills Representation
Following the learning patterns described above,
we model an agent’s skill-set in two distinct ways:

(1) Query examples: Similar to building knowl-
edge overtime via agent interaction, an agents’



Figure 4: Overview of OFA approaches. (a) Bi-Encoder which is used for both QA and QR pairing encodes the
question and candidate response/description separately and computes a ranking score via a dot product calculation.
(b) Our MARS encoder jointly encodes the question and response into a single transformer and performs self-
attention between the question and candidate response. To score a response we reduce the candidate embedding
from a vector to a scalar score between 0...1 (Humeau et al., 2020).

query examples allows the model to learn what
type of queries each agent is capable of resolv-
ing. For example, questions such as “Where is the
nearest gas station?" and "Direct me to Starbucks
please" will be amongst the query examples for a

“Directions" agent.
(2) Agent descriptions:. These are textual sum-

maries of an agent’s capabilities. For example, a
bank releases a new CA for its customers to use
instead of having to visit the bank. Accompanied
with this agent will be a semi-formal description
of what this agent is capable of doing. This infor-
mation is often publicly available in the agent’s
marketing materials.

Using these query examples and agent descrip-
tions, we explore approaches for determining the
agent best to resolve a given query. We describe in
more detail the dataset collection process in Sec-
tion 4.

Question agent pairing using query examples
QA pairing using query examples seeks to explore
how best we can facilitate agent orchestration in a
data constrained environment where only a few ex-
amples of the questions the agents can answer are
present. This is similar to the use of text examples
for the training of an intent classifier but at the agent
level instead. Therefore, we treat this as a multi-
label classification problem where a given query
Q is mapped to a set of agents A. e.g Q: ‘locate
me some good places in Kentucky that serve sushi‘

maps to the set of agents A: [“Alexa”, "Google"]
indicating that this query can be correctly answered
by the agents Alexa and Google. Specifically, as
shown in Figure 3, we build a multi-label classi-
fier on top of state-of-the-art transformer models,
BERT (Devlin et al., 2019), RoBerta (Liu et al.,
2019) and Electra (Clark et al., 2020) to predict an
agent A given a query Q.

Question agent pairing using agent descriptions
While query examples are useful for understanding
the capabilities of a given agent, they may not be
readily available. When a new agent is introduced,
users are unsure of the exact questions this agent
can answer but they would typically have access
to an explanation of its capabilities. As an alter-
native, we explore the use of such a description
of the agents. For this task, we assume a textual
description of an agent’s capabilities, e.g. "Our pro-
ductivity bot helps you stay productive and orga-
nized. From sleep timers and alarms to reminders,
calendar management, and email ....".

In order to map a given query Q to an agent A
described by description Di, we treat this as a se-
mantic similarity task. The intuition behind this is
that for a given query Q the agent that is capable of
answering a given question is likely to feature an
agent description semantically similar to the ques-
tion. We explore a suite of pre-trained and fine-
tuned language models focusing on ranking the
relevance of given description Di to a query Q. Ad-



ditionally, given the length of descriptions and the
range of capabilities that may be described within
a single description, we split the full description at
the sentence level and use each sentence to repre-
sent a single skill Si belonging to agent A. With
this variation, the question-description similarity
score is calculated as the maxi SemSim(Q,Si).

For our BBAI task we consider the following
state-of-art semantic retrieval-based approaches
whose utility map well to our problem domain:

BM25 This classic method measures keyword
similarity and uses it to estimate the relevance of
documents to a given search query (Robertson and
Zaragoza, 2009). We encode the collection of agent
descriptions and return the agent whose description
is most relevant to the given query.

Universal Sentence Encoder (Cer et al., 2018)
A sentence encoding model for encoding sentences
into high dimensional vectors. We use the trans-
former model5 for our experiment. As shown in
part (a) of Figure 4, we encode the user query and
the agent description and compute the dot product
as a ranking score.

Roberta + STS (Reimers and Gurevych, 2019)
We fine-tune Roberta-base on the STS benchmark
dataset and use this model to encode our agent
descriptions and user query. We compute the co-
sine similarity between the two vectors to compute
a ranking score for each description as shown in
Figure 4.

3.2 Question Response Pairing

Contrary to question agent pairing which selects
the agent beforehand, question response pairing
assumes that we provide each agent in the en-
semble the opportunity to respond to the query
Q and focus on selecting the best response from
the set of returned responses. As such, we treat
this as a response ranking problem of determining
which question-response pair (Q,Ri) best answers
the query Q. Prior work has shown strong per-
formance on sentence pairing tasks such as this
through the use of sentence encoders and language
model fine-tuning (Henderson et al., 2019; Humeau
et al., 2020; Reimers and Gurevych, 2019). We ex-
plore the use of these architectures in the domain
of response selection with the goal of learning rep-

5https://tfhub.dev/google/
universal-sentence-encoder/4

resentations for correct question answering from
diverse conversational agents.

BM25 Similar to our use of BM25 for question
agent pairing we use it to rank each of our question
response pairs.

USE and USE QA (Yang et al., 2019) We apply
the USE model from our agent pairing task to rank
agent responses. In addition, we consider USE
QA, an extended version of the USE architecture
specifically designed for question-answer retrieval
applications. We use the Bi-Encoder architecture
as shown in Figure 4 (a).

Roberta + STS We fine-tune Roberta-base on
the STS benchmark dataset and use it to encode
our question response pairs using the bi-encoder
architecture in figure 4.

MARS encoder Pre-existing sentence pairing
scoring models are tuned to score sentence pairs
deemed semantically similar. However, in the case
of conversational systems, an agent’s response can
be semantically similar but still incorrect. e.g
Q: "What is the weather in Santa Clara today?",
R: "Weather information is currently unavailable".
These two sentences are semantically similar but
the response does not resolve the query. In the
MARS encoder, we focus on learning representa-
tion beyond similarity by also incorporating the
correctness of agent responses. Using the cross-
encoder architecture (Humeau et al., 2020; Reimers
and Gurevych, 2019) shown in part (b) of Figure
4, we train a question response pair scoring model
for the task of ranking responses to a given query
Q generated by conversational agents. We concate-
nate both the input question and response perform-
ing full self-attention on the entire input sequence.
By passing both the question and agent response
through a single transformer, the agent response
is able to attend to the user query and produce a
more input sensitive representation of the question
response embedding. Using the generated question
response embedding vector we then convert it to
a scalar score S(Q,Ri) between 0..1 via a linear
layer. Our training objective is to minimize the
Cross-Entropy loss between the correct agent re-
sponses and the negative agent responses to the
query Q.

https://tfhub.dev/google/universal-sentence-encoder/4
https://tfhub.dev/google/universal-sentence-encoder/4


Question Agent Response
Alexa Google Houndify Adasa

At how many miles will
I run out of gas

"here’s something I
found on the web
according to
freakonomics.com
previously when cars
got 8 to 12 miles ...."

"on the website post
Dash gazette.com they
say some popular car
models can make it
between 30 and 50
miles ....",

Didn’t get that!
"With your current fuel
economy of 28 MPG,
you should be able to
cover about 532 miles
with the fuel you have."

Is it gonna be warm Fri-
day in Alhambra?

"here’s something I
found on the web
according to Wikipedia.
Org Cobra is one of the
100 selected cities in
India which will be
developed ...."

"No, it won’t be hot
Friday in Alhambra,
California. Expect a
high of 21 and a low of
6.",

"There will be a high of
seventy degrees in
Alhambra on Friday
November
twenty-seventh."

"Out of scope!"

Table 1: Sample question agent responses from the One For All dataset. Responses highlighted in green represent
agent responses voted as correct by crowd workers.

4 Dataset Construction

For the task of BBAI, we construct a new dataset
focusing on making it representative of real-world
conversational agents at scale and covering a broad
range of domains.

Using Amazon Mechanical Turk and
scenario/paraphrasing-based prompts (Kang
et al., 2018; Larson et al., 2019), we crowd-
sourced utterances across a range of agent
skills/capabilities. These skills were extracted
from public information sources describing each
of the agents, in addition to observing their
capabilities. Our dataset is comprised of utterances
across 37 broad domain categories. These include
domains such as Weather, Flight Information,
Directions, Automobile, etc. Crowd workers were
paid $0.12 for 5 utterances. These submitted
utterances were then vetted by hand to ensure
quality. Using the curated utterances, we then
generated question responses by querying each
agent to gather its response to the utterance.

In order to generate ground truth samples on
which of the question-response pairs (Q,Ri) cor-
rectly resolves the query Q we launched a crowd-
sourcing task asking workers to indicate the candi-
date responses that best answer the question shown.
Five workers were assigned to each response se-
lection task and majority voting (>2) was used to
label the gold responses. As such for each query
Q and the set of responses R we were able to
gather the necessary question-agent pairs (Q,Ai)
and question-response pairs (Q,Ri) needed to eval-
uate our approaches.

Agent Descriptions We gather our agent descrip-
tions by scraping the contents of each of the agent’s
public product pages and their built-in feature doc-
umentation web pages. We then manually clean,
reformat and merge this data into a single docu-

ment per agent. For our experiment, we focus only
on extracting descriptions related to the built-in
features of our agents.

Overall our dataset contains 5550 utterances
with 19 question-response pairs per question (one
from each of the 19 agents), 105,450 in total. The
utterances are split into 3700 utterances (100 per
domain) for the training set and 1850 (50 per do-
main) for the test set. The train and test sets re-
spectively contain 2399 and 1186 utterances with
at least one positive question-response pair. In the
remaining examples, none of the agents were able
to achieve annotator agreement (>= 3). A sample
dataset example is shown in table 1 with responses
from 4 of the 19 agents.

5 Results and Discussion

In this section we present and analyze the results
of our experiments, detailing our insights and dis-
cussing the implications of each of our techniques.

Evaluation task: Similar to standard informa-
tion retrieval evaluation measures, we denote accu-
racy as the metric precision@1 and use it to evalu-
ate both our question agent and question response
pairing approaches. For question agent pairing this
metric denotes: Given a set of N agents to the
given query, whether the agent selected ultimately
resolves the query successfully. For question re-
sponse pairing it denotes: Given a set of N re-
sponses to the given query, whether the top-scoring
response resolves the query successfully. For this
evaluation, we test on examples with at least one
valid agent response.

5.1 Question agent pairing
The results are summarized in tables 2 and 3. We
find that for the QA pairing Roberta yields the
best result with an accuracy of 69% in selecting
the correct agent and 61.8% when scaled to 19



Agent Breakdown
Method Accuracy (n=4) Alexa Google Houndify Adasa

Question Agent Pairing
(QA Labels)

Bert 68.31 37.98 40.93 18.49 2.6
Electra 67.86 35.28 42.01 20.11 2.6
Roberta 69.03 34.92 41.56 20.65 2.87

Question Agent Pairing
(Descriptions)

BM25 27.91 13.91 10.95 17.33 57.81
USE 47.84 13.20 28.82 52.42 5.56
Roberta+STS 39.40 18.94 22.35 51.35 7.36

Response Selection

BM25 51.07 28.64 24.69 14.81 31.86
USE 72.89 34.20 27.65 22.98 15.17
USE QA 75.49 41.65 36.45 17.95 3.95
Roberta+STS 69.83 18.94 22.35 51.35 7.36
MARS 79.70 37.34 43.9 15.71 3.05

Individual Agents

Alexa 49.37 - - - -
Google 51.79 - - - -
Houndify 34.82 - - - -
Adasa 4.12 - - - -

Table 2: Performance breakdown of QA and QR approaches on our BBAI task when using our 4 largest agents
Alexa, Google, Houndify and Adasa. Note: n = number of agents.

Method Accuracy (n=19) Agents

Question Agent Pairing
(QA Labels)

Bert 59.10 Alexa, Google
Houndify, Adasa

Recipe agent
Dictionary agent

Task Manager
Hotel agent, Stock agent
Math agent, Sports agent

Wikipedia agent
Mobile Account agent

Banking agent
Coffee shop agent
Event Search agent

Jokes agent
Reminders agent
Covid-19 agent

Electra 52.86
Roberta 61.88

Question Agent Pairing
(Descriptions)

BM25 23.69
USE 43.59
Roberta+STS 36.67

Response Selection

BM25 59.94
USE 64.42
USE QA 71.66
Roberta+STS 56.82
MARS 83.55

Individual Agents

Alexa 44.09
Google 48.06
Houndify 32.04
Adasa 3.45

Table 3: Performance breakdown of QA and QR ap-
proaches on our BBAI task on all 19 commercial agents
we show that the MARS encoder is able to scale and
leverage the capabilities of new agents added to the en-
semble without diminishing performance compared to
other approaches.

agents. Similarly, we see that we can achieve fair
performance in extreme data-scarce environments
when using simple agent descriptions compared to
that of query agent examples, with USE achieving
47.8% accuracy. Using agent descriptions offers
greater flexibility in facilitating the improvement of
agents over time compared to query examples since
it only requires an update to the agent description.
However, it still falls short when compared to using
a single agent like Google or Alexa. Also, while
consistent in learning to recognize the domain a
given agent may be performant in, QA approaches
fall short in a few cases:

(1) Agent overlap - This is when a given do-
mains’ coverage is split between various agents. e.g
The model learns that both Alexa & Google have
proficiency in handling some weather queries but
it remains unclear about which one is best suited
for the current query at hand.

(2) Query variation - While an agent’s exam-
ples or descriptions may allude to proficiency in
a given domain, it may still fail when asked cer-

Evaluation Performance per Domain (n=19)
Domain MARS (QR) USE (QA) Roberta (QA)
Weather 0.88 0.45 0.67
Directions 0.78 0.29 0.44
Auto 1.00 0.79 0.82
Restaurant Suggestion 0.79 0.5 0.68
Travel Suggestion 0.97 0.33 0.57
Time 0.81 0.54 0.76
Flight Info 0.83 0.61 0.7
Date 0.82 0.47 0.56

Table 4: Further breakdown of the best-performing ap-
proaches per technique on a subset of 8 out of the 37
domains. We find that our MARS encoder generalizes
well across the various agent domains.

tain query variations. e.g Figure 1 shows a case
where Alexa is capable of handling weather queries
but fails when a condition like humidity is asked
for. Another example is when a similar question
is asked in a different or more complex way. Both
Houndify & Alexa are known to be proficient at
answering age-related questions but for questions
like "How old I will be on September 28, 1995, if I
was born on March 29, 1967?", Alexa is unable to
answer as opposed to Houndify.

These cases are further highlighted when inspect-
ing QA pairing performance at the domain level in
table 4. We find that the QA approaches struggle
with domains such as "travel suggestion" and "Di-
rections" which are heavily split in coverage and
more diverse in their variation.

5.2 Question response pairing

In overall performance we find that our MARS
encoder outperforms strong baselines, achieving
83.55% accuracy on the BBAI task. We note that
our MARS encoder outperforms the best single per-
forming agent (Google Assistant) by 32%. This
shows the utility and power of OFA in not only al-
leviating the need for users to learn and adopt mul-



tiple agents but also validating that multiple agents
working collectively can achieve significantly more
than single agents working in isolation.

When inspecting the performance of MARS at
the domain level we see in Table 4 that it is able to
maintain its high performance across the varying
domains unlike the QA approaches. This advantage
comes from the ability to select an agent at the
response level allowing the system to catch cases
in which an agent once deemed proficient fails or
another agent improves.

5.3 Agent pairing vs Response pairing
We now describe the trade-offs between agent pair-
ing and response pairing. Question response pair-
ing greatly outperforms agent pairing in terms of
accuracy, given that it is privy to the final responses
from each of the agents. However, in practice, this
comes with additional networking, compute, and la-
tency costs from having to send the query to each of
the agents and await their response. Given that the
querying of agents is done in parallel, the latency
cost is equal to that of the slowest agent. Question
response pairing also better supports agent adap-
tation. With response pairing, a system can seam-
lessly add or remove an agent without diminishing
the experience as shown by MARS in table 3. In
addition, as conversational agents are upgraded to
offer a more diverse feature-set such as new domain
support or improved responses, they can instantly
be integrated into a response pairing approach.

5.4 Scalability
We evaluate our approaches on a suite of 19 com-
mercially deployed agents spanning 37 broad do-
main categories. As shown in table 2 we exam-
ine performance when using the 4 largest agents
in terms of domain support and popularity (Alexa,
Google Assistant, Houndify and Ford Adasa) show-
ing improvement upon single-agent use in both QA
and QR approaches. When scaled up to 19 agents,
MARS encoder improves even further by leverag-
ing the new capabilities of the additional agents
and is the only approach that does not decrease in
performance as the number of agents and domains
scale. This improvement is due to the input sen-
sitive representations that the MARS encoder is
able to learn by encoding both the question and
response in a single transformer.

Cross-encoding vs Bi-encoding For pairwise
sentence scoring tasks such as response selection
which compare question response pairs, it is impor-

tant to be mindful of the trade-offs between cross
encoder based models such as MARS in figure 4
(b) and bi-encoder models such as USE in 4 (a).
Cross-encoders perform full self-attention over the
pairwise input of the question and response, thus,
producing an encoding representative of the com-
bined input. This typically leads to much more
performative models, especially in pairwise scor-
ing tasks such as ours. However, given that this
encoding isn’t independent of the question for each
question response pair, it is necessary to produce an
encoding for each question label pair. Bi-encoders
on the other hand perform self-attention over the
question response pairs separately, map them to a
dense vector space, and score them using an ap-
propriate distance metric. With this separation,
bi-encoders are able to index the question and com-
pare these representations for each response result-
ing in faster prediction times when the numbers
of candidate responses to a given question scales.
Given the nature of our BBAI task which focuses
on the scoring of responses to a singular question
as opposed to a clustering task which requires an
encoding for every pairwise combination across a
set of sentences, cross-encoder based architectures
remain a viable option even at the production scale
for our use case.

6 Related Work

Ensemble approaches to solving complex tasks in
the context of NLP are widely used (Deng and
Platt, 2014; Araque et al., 2017). In dialogue sys-
tems, recent attempts at ensemble approaches and
multi-agent architectures include Cercas Curry et al.
(2018) and Subramaniam et al. (2018). AlanaV2
(Cercas Curry et al., 2018) demonstrated an en-
semble architecture of multiple bots using a com-
bination of rule-based machine learning systems
built to support topic-based conversations across
domains. It was built to be an open domain bot
supporting topic-based conversations. Specifically,
AlanaV2’s architecture utilizes a variety of ontolo-
gies and NLU pipelines that draw information from
a variety of web sources such as Reddit. However,
its agent selection approach is guided by a sim-
ple priority bot list. Subramaniam et al. (Subra-
maniam et al., 2018) describe their conversational
framework that employs an Orchestrator Bot to
understand the user query and direct them to a
domain-specific bot that handles subsequent dia-
logue. In our work, we expand up the multi-agent



goal by focusing on the integration of black-box
conversational agents at scale.

6.1 Response Selection

This is the task of selecting the most appropriate
response given context from a pool of candidates.
It is a central component of information retrieval
applications and has become a focal point in the
evaluation of dialogue systems. (Sato et al., 2020;
Henderson et al., 2019; Wang et al., 2020). Prior
work has shown strong performance on sentence
pairing tasks through the use of sentence encoders
and language model fine-tuning (Henderson et al.,
2019; Humeau et al., 2020; Reimers and Gurevych,
2019). In our work, we explore the task of response
selection using it as one of the bases for integrating
black-box conversation agents.

7 Conclusion

The rapid proliferation of conversational agents
calls for a unified approach to interacting with mul-
tiple CAs. The key challenge of building such
an interface lie in that most commercial CAs are
black-boxes with hidden internals. This paper in-
troduces BBAI a new task of agent integration that
focuses on unifying black-boxes CAs across vary-
ing domains. We explore two task techniques, ques-
tion agent pairing and question response pairing
and present One For All, a scalable system that
unifies multiple black-box CAs with a centralized
user interface. Using a combination of commer-
cially available conversational agents, we evaluate
a variety of approaches to multi-agent integration
through One For All. Our MARS encoder achieves
83.5% accuracy on BBAI and outperforms the best
single agent configuration by over 32%. These re-
sults demonstrate the power of One For All which
can leverage state-of-the-art NLU approaches to
enable multiple agents to collectively achieve more
than any single conversational agent in isolation
eliminating the need for users to learn and adopt
multiple agents.

This work opens up a wide range of potential
future work involving the design of systems geared
towards facilitating more advanced multi-agent in-
teraction. We foresee a system with even greater
response selection performance as the NLP commu-
nity continues to produce more state-of-the-art lan-
guage models with even greater contextual knowl-
edge of the world. Extensions of this work can in-
clude examining not only the integration of agents

but the interoperability by facilitating the passing
of shared conversation knowledge across agents
especially in multi-turn conversational scenarios
across multiple agents.
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